Using Wikipedia with associative networks for document classification
نویسندگان
چکیده
We demonstrate a new technique for building associative networks based on Wikipedia, comparing them to WordNet-based associative networks that we used previously, finding the Wikipedia-based networks to perform better at document classification. Additionally, we compare the performance of associative networks to various other text classification techniques using the Reuters-21578 dataset, establishing that associative networks can achieve comparable results.
منابع مشابه
Document Categorization using Multilingual Associative Networks based on Wikipedia
Associative networks are a connectionist language model with the ability to categorize large sets of documents. In this research we combine monolingual associative networks based on Wikipedia to create a larger, multilingual associative network, using the cross-lingual connections between Wikipedia articles. We prove that such multilingual associative networks perform better than monolingual as...
متن کاملHierarchical Document Categorization Using Associative Networks
Associative networks are a connectionist language model with the ability to handle dynamic data. We used two associative networks to categorize random sets of related Wikipedia articles with only their raw text as input. We then compared the resulting categorization to a gold standard: the manual categorization by Wikipedia authors and used a neural network as a baseline. We also determined a h...
متن کاملA Comparison of Four Association Engines in Divergent Thinking Support Systems on Wikipedia
Associative information, e.g., the associated documents, associated keywords, freelinks, and categories are potential sources for a divergent thinking support. This paper compares four divergent thinking support engines using the associative information extracted from the Wikipedia. The first two engines adapt the association search engine GETA [1], and the last two engines finds the associatio...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملGrouping by association: using associative networks for document categorization
In this thesis we describe a method of using associative networks for automatic document grouping. Associative networks are networks of ideas or concepts in which each concept is linked to concepts that are semantically similar to it. By activating concepts in the network based on the text of a document and spreading this activation to related concepts, we can determine which concepts are relat...
متن کامل